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Physics H7A Fall 1998 (Strovink)

SOLUTION TO PROBLEM SET 3
Composed and formatted by E.A. Baltz and M. Strovink; proofed by D. Bacon

1. (a.) This problem is a simple force bal-
ance. The component of the tension in the rope
pointing up must balance the force of gravity
pulling down on the shirt. We are going to
ignore the effect of gravity on the rope. The
angle that the rope makes with the horizontal
is just tanφ = 8 cm/5 m = 0.016. The sine of
this angle is very close to this value. In fact
sinφ = 0.015998, so we will use sinφ = 0.016.

The equation for the force balance in the
vertical direction is just

2T sinφ = mg

This ensures that the force of tension balances
gravity. There is a factor of two in front of the
tension because the tension in each half of the
rope acts on the mass. Solving this equation
with the values given, the answer is

T = 153 N

(b.) This part is similar to the first. In this
case the force being applied to the rope is a
man pushing on it, no gravity, but the method
is the same. The force of 500 N must be bal-
anced by tension in the rope. The angle tanφ =
3/25 = 0.12 is much larger, but the approxima-
tion sinφ ≈ tanφ ≈ φ is still very accurate, so we

will use sinφ = 0.12. We also need cosφ = 0.99.
The force of tension is found by a force balance

2T sinφ = 500 N ⇒ T = 2083 N

The force acting on the car is just the cosine of
the angle times this tension, assuming that we
want the force directed towards the tree.

F = T cosφ = 2062 N

Now we want to find how far the car is shifted.
The original right triangle had sides 3 ft, 25
ft, and

√
9 + 625 =25.18 ft. The rope will not

stretch anymore, so the hypotenuse of this tri-
angle will remain the same, 25.18 ft. The rope
is pushed an additional 2 ft, so the short side
now has length 5 ft. The long side must have
length

√
634− 25 = 24.68 ft. The car has moved

twice this distance, since the are two triangles
with total hypotenuse ≈ 50 ft; only 0.63 ft of car
movement is produced by pushing the rope 2 ft.
This isn’t a very practical way to get the car out
of the ditch.

2. (a.) In this problem we will again use the
fact that sin θ ≈ θ when θ � 1. The angle
that the rope makes with the normal force is
∆θ/2, so the tension in the normal direction is
T sin(∆θ/2) ≈ T∆θ/2. There are two tensions
here, one from each side of the rope, and they
must balance the normal force. The normal force
on this section of string is then just

∆N = T∆θ

(b.) The length of rope that covers an angle
∆θ on a circular object is just r∆θ. θ of course
is measured in radians. The normal force per
length on the cylinder is ∆N/∆�. Plugging in
the result for ∆N from part (a.), and using
∆� = r∆θ, we find

∆N
∆�

=
T

r
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(c.) When the tension on the rope is not con-
stant, there can be slipping. The force counter-
ing this is friction. If the tension changes by an
amount ∆T along a small section of rope, the
frictional force must be equal to it. The fric-
tional force is µ∆N when it is just about to slip.
We thus get ∆T = µ∆N . Plugging in the re-
sults of (a.), we get ∆T = µT∆θ. We are going
to promote this relation between small quanti-
ties to a differential relation, so that we can get
a differential equation to solve.

dT = µTdθ ⇒ dT

dθ
= µT

This is a differential equation that we can
solve by direct integration.

dT

dθ
= µT ⇒ dT

T
= µdθ

⇒
∫ T (θ)

T0

dT ′

T ′ =
∫ θ

0

µdθ′

These integrals are ones that you should memo-
rize if you haven’t yet. The result is

lnT (θ)− lnT0 = µθ ⇒ T (θ) = T0e
µθ

The tension increases exponentially, provided
that the rope is about to slip.

(d.) Here we are going to calculate some val-
ues for this amplification of force. µ = 0.2 and
T0 = 100 lbs. The values of T for 1, 2, 3, and
4 complete turns are as follows. One complete
turn has angle 2π. Exp(2πµ) = 3.51, so the ten-
sion at the other end is 351 lbs. For two turns,
the angle is 4π, so the amplification factor is
exp(4πµ) = 12.35 and the tension at the other
end is 1235 lbs. For three complete turns, the
tension is 4338 lbs. For four complete turns, the
tension is 15240 lbs, almost 8 tons!

3. A dish sits in the middle of a square table of
side s. The coefficient of friction between dish
and tablecloth is µ1. The coefficient of friction
between the dish and table is µ2. The tablecloth
is rapidly pulled out from under the dish. The
dish moves a distance x1 while in contact with
the moving tablecloth, and a distance x2 while in
contact with the table. Let the mass of the dish
be m, but we will see that this doesn’t matter.

(a.) The tablecloth is being pulled out from
under the dish, so the dish is sliding on the
tablecloth. The frictional force tends to pull the
dish to the edge of the table because this op-
poses the direction of the sliding. The normal
force of the dish on the table is just mg, so the
force of sliding friction is just µ1mg. Newton’s
second law then tells us that

F = ma = mµ1g ⇒ a = µ1g

This is a constant acceleration, so we can easily
determine the amount of time that the dish is
on the tablecloth and its maximum velocity. We
know the total distance traveled is x1, so we get
the following equations for the time of contact
t1 and the maximum velocity v:

x1 =
1
2
µ1gt

2
1 v = µ1gt1

These equations are easily solved for t and v:

t1 =
√

2x1

µ1g
v =

√
2x1µ1g

(b.) We do the same thing for the period when
the dish slides on the table. This time, the fric-
tional force tends to slow the dish down. The
frictional force is −µ2mg, so the acceleration is
a = −µ2g. The trip starts at the maximum ve-
locity v, and ends with the dish at rest having
moved a distance x2. We can again solve for the
travel time t2 and the maximum velocity v:

x2 = −1
2
µ2gt

2
2 + vt2 v = µ2gt2

Again these equations are easily solved

t2 =
v

µ2g
v =

√
2x2µ2g t2 =

√
2x2

µ2g
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(c.) In part (c.), we derived two expressions
for the maximum velocity v. If we equate these
we can get an expression relating the distances
traveled x1 and x2.√

2x1µ1g =
√
2x2µ2g ⇒ µ1x1 = µ2x2

For the dish to remain on the table, we need
the total distance traveled to be less than half
the length of the table, x1 + x2 ≤ s/2. We can
combine these equations to solve for the distance
x1 that the dish spends on the tablecloth. We
will consider the case where the dish stops at
the edge of the table so the total distance trav-
eled is s/2. From the previous equation we get
a relation between x1 and x2

x2 =
µ1

µ2
x1

Combining this with the previous equation, we
get the final answer

x1 + x2 =
s

2
⇒

(
1 +

µ1

µ2

)
x1 =

s

2

⇒ x1 =
(s
2

) µ2

µ1 + µ2

(d.) To find the amount of time the dish is in
contact with the tablecloth, we just use the re-
sult of part (a.), t1 =

√
2x1/µ1g. Plugging in

our result, we get

t1 =

√(
s

g

) (
µ2

µ1

)
1

µ1 + µ2

(e.) It is possible that the dish won’t slide at
all. This is the case of static friction. This force
must be overcome but a sufficiently hard tug.
The tablecloth must accelerate at the beginning
of the pull to get to its high, but constant veloc-
ity. If this acceleration is too low (a1 < µstatic

1 g),
the force of static friction will be sufficient to ac-
celerate the dish at the same rate, and the host
will not be pleased. If the initial acceleration is
high enough, the force of static friction cannot
impart the necessary acceleration to the dish,
and it begins to slide.

4. A string has length L and can support a ten-
sion T . A mass m is spun around on the end of
the string.

(a.) The string is spun horizontally. The cen-
tripetal acceleration is v2/L, so the force needed
to supply this acceleration is mv2/L. In this
case, the only force to consider is the tension.
The maximum velocity is given by

mv2

L
= T ⇒ v =

√
LT

m

The above would be correct if gravity could
be ignored for part (a.). However, we know this
cannot be the case, because then there would be
no definition for the word “horizontal”. Grav-
ity must be present. If so, the string makes an
angle θ with the horizontal, and the radius of
the spin is L cos θ. The centripetal acceleration
is v2/L cos θ. This must be provided entirely
by the tension in the rope in the radial direc-
tion, which is T cos θ. This gives a relationship
between v and θ for a given T :

v2 =
TL

m
cos2 θ ⇒ cos2 θ =

mv2

TL

The tension must also oppose the force of grav-
ity downward, giving a second relation, which
will be easier to handle when squared

T sin θ = mg ⇒ sin2 θ =
(mg
T

)2

Adding these two equations, and using cos2 θ +
sin2 θ = 1, we get a condition on the velocity

m

TL
v2 +

m2g2

L2
= 1 ⇒ v2 =

LT

m
− mg

2L

T

The maximum velocity considering gravity is
thus

v =

√
LT

m
− mg

2L

T



4

(b.) The string is spun vertically. In this case
we must also consider gravity. Gravity directly
opposes the tension when the mass is at its low
point. At any other point, the tension is less.
At the low point, the two forces of tension and
gravity oppose each other, so the tension must
be higher to provide the centripetal acceleration.
When the rope is at an angle θ to the vertical,
the centripetal force is provided by two sources,
gravity and tension

mv2

L
= T (θ)−mg cos θ

T (θ) is largest at the bottom of the path, when
θ = 0. Set T (0) = T , the largest allowed tension.
This gives the final answer

mv2

L
= T −mg ⇒ v =

√
LT

m
− Lg

5. K&K problem 2.31

Find the effective spring constants of these
two spring systems. Remember that the fre-
quency of oscillation is ω =

√
k/m.

(a.) Consider the point where the springs are
attached to each other. There shouldn’t be any
force acting there because the small point is
massless. We can write equations for the dis-
placements of the two springs x1 and x2. This
spring force acts like a tension in that it pulls
from both ends.

F1 = −k1x1 = F2 = −k2x2 ⇒ k1x1 = k2x2

The total displacement of the mass is x1 + x2,
and the total force is just the spring force of the
bottom spring F = −k2x2. Applying the general
relation F = −kx, where k is the spring constant
of the combined spring system and x = x1 + x2,
we get

F = −k2x2 = −k(x1 + x2) ⇒ k =
k2x2

x1 + x2

Using the fact that x1 can be written in terms of
x2, we can remove the position dependence from
the equation:

k =
k2

k2
k1

+ 1
⇒ k =

k1k2
k1 + k2

This relationship is usually written in a different
way that is easier to remember. You can check
that it is correct:

1
k
=

1
k1

+
1
k2

The final result for the frequency is

ωa =

√
k1k2

m(k1 + k2)

(b.) In this case the thing to notice is that the
displacements of the two springs must be equal,
otherwise the support would be tilting.

F1 = −k1x F2 = −k2x

The total force acting on the mass is just the sum
of these two forces F = F1 + F2. We can easily
find the effective spring constant of the system:

F = −kx = −k1x− k2x ⇒ k = k1 + k2

The final result for the frequency is

ωb =

√
k1 + k2
m

6. K&K problem 2.35

(a.) In this problem we need to solve a differ-
ential equation. A block slides on a frictionless
table inside a fixed ring of radius l. The ring has
a coefficient of friction µ. We want to find the ve-
locity as a function of time. At time t = 0 the ve-
locity is v0. We will assume that the block moves
in the circular path defined by the ring. This
makes it effectively a one dimensional problem.
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There are two forces acting on the block in
the plane of the table. They are the normal force
exerted by the ring and the frictional force. The
normal force merely makes the block move in
the circular path that we assumed. We do need
to know it though, because we want to calcu-
late the frictional force. We find it in the usual
way, by requiring that it provide the centripetal
acceleration.

acentripetal =
v2

l
⇒ N =

mv2

l

We can now write the equation of motion for the
particle by Newton’s second law

m
dv

dt
= −µN = −µmv

2

l
⇒ dv

dt
= −µ

l
v2

This equation can be solved by direct integra-
tion, as you saw in problem 2:

dv

v2
= −µ

l
⇒

∫ v(t)

v0

dv

v2
= −

∫ t

0

µdt

l

⇒ 1
v0

− 1
v(t)

= −µt
l

This result can be simplified to get K&K’s result

v(t) = v0

(
1 +

µv0t

l

)−1

(b.) Now that we know the velocity of the
block, finding the position is easy. It is eas-
iest to describe the position in terms of the
angle on the circle. We can easily determine
the angular velocity as a function of time, be-
cause ω(t) = v(t)/l. We know the velocity, so to
get the position we just integrate. Assume that
θ = 0 at t = 0, which also means x = l, y = 0

θ(t) =
∫ t

0

ω(t′)dt′ =
∫ t

0

v0
l

( 1
1 + µv0t′/l

)
dt′

=
1
µ
ln

(
1 +

µv0
l
t′
)t

0

The final result for the total angle traveled is

θ(t) =
1
µ
ln

(
1 +

µv0
l
t
)

Notice that the total distance traveled is infinite
if one waits for an infinite time, even though the
velocity approaches zero as time increases. We
can of course write the x and y coordinates of
the block as functions of time:

x(t) = l cos(θ(t)) y(t) = l sin(θ(t))

7. The two skaters each have mass 70 kg. Skater
A carries a 10 kg bowling ball. Initially each
skater is moving at 1 m/sec, and they are ap-
proaching each other. They are going to try to
avoid collision by throwing the bowling ball back
and forth.

This problem uses conservation of momen-
tum. Skater A starts out with pA = (70 + 10)×
1 = 80 kg-m/sec of momentum. Notice that we
must include the momentum of the bowling ball
in the momentum of skater A when he is carry-
ing it. This adds 10 kg-m/sec to skater A’s 70
kg-m/sec, since the bowling ball has a mass of
m = 10 kg. Skater B is going in the opposite di-
rection, so her momentum is negative, pB = −70
kg-m/sec. Skater A throws the bowling ball to
skater B in an attempt to stop the collision.
Since there are no external forces on the sys-
tem consisting of skater A and the bowling ball,
the total momentum of these two objects is con-
served. Throwing the bowling ball at 5 m/sec
relative to the (initial) velocity of skater A gives
it a momentum of 60 kg-m/sec. This is because
the bowling ball velocity is 6 m/sec when we add
the initial velocity of 1 m/sec. Skater A is left
with a momentum of pA = 20 kg-m/sec, so he
hasn’t reversed direction or stopped.

Next we consider the system of skater B
and the bowling ball. Again there are no ex-
ternal forces, so the momentum of skater B plus
the bowling ball is conserved. The total mo-
mentum is 60 kg-m/sec from the ball and −70
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kg-m/sec from skater B. When skater B catches
the ball, she will then have all of this momen-
tum, pB = −10 kg-m/sec. After this exchange,
skater B has the ball, and the two skaters are
still approaching each other. One toss was not
enough. To summarize the first toss

initial pA = 80 pB = −70
intermediate pA = 20 pB = −70 pball = 60

final pA = 20 pB = −10

The second toss will be enough to stop the col-
lision. We calculate the velocity of skater B
(including the bowling ball): v = p/m = −0.125
m/sec. Now skater B throws the bowling ball
to skater A. The bowling ball’s velocity will be
−5.125 m/sec, so its momentum will be −51.25
kg-m/sec. This leaves skater B with pB = 41.25
kg-m/sec. This is in the opposite direction to
her initial motion. Skater A gets all of the
momentum of the ball again, so pA = −31.25
kg-m/sec. This is also opposite to his initial di-
rection. So, after two tosses, the skaters are
moving away from each other and the collision
is averted. Plotting position versus time for the
two skaters, we get a graph like the following:

8. This is an example of a center of mass calcu-
lation. Let’s put the hoop on a polar coordinate
system so that it goes from θ = (−π/2, π/2). In
cartesian coordinates this is on the right half-
plane.

It is fairly obvious that the center of mass lies
on the line YCM = 0, or θ = 0. The center of
mass is calculated by the following

XCM =
1
M

∫
xλ dl

where λ is the linear mass density and dl is a dif-
ferential of length on the hoop. If the hoop has
mass M , the linear mass density is λ = M/πR.
We can use polar coordinates to integrate this.
Remember that x = R cos θ for points on the
hoop. The differential of length on the hoop is
dl = Rdθ, so the integral we need to do is

XCM =
1
M

∫ π/2

−π/2

RM

π
cos θ dθ =

2
π
R


